Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 96: 129531, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866711

RESUMO

Compound 5 was identified from a high-throughput screening campaign as a small molecule pharmacological chaperone of glucocerebrocidase (GCase), a lysosomal hydrolase encoded by the GBA1 gene, variants of which are associated with Gaucher disease and Parkinson's disease. Further investigations revealed that compound 5 was slowly transformed into a regio-isomeric compound (6) in PBS buffer, plausibly via a ring-opening at hemiaminal moiety accompanied by subsequent intramolecular CC bond formation. Utilising this unexpected skeletal rearrangement reaction, a series of compound 6 analogues was synthesized which yielded multiple potent GCase pharmacological chaperones with sub-micromolar EC50 values as exemplified by compound 38 (EC50 = 0.14 µM).


Assuntos
Doença de Gaucher , Doença de Parkinson , Humanos , Glucosilceramidase/genética , Mutação , Doença de Gaucher/tratamento farmacológico , Chaperonas Moleculares
2.
SLAS Discov ; 28(3): 73-87, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36608804

RESUMO

Mitochondrial dysfunction and aberrant mitochondrial homeostasis are key aspects of Parkinson's disease (PD) pathophysiology. Mutations in PINK1 and Parkin proteins lead to autosomal recessive PD, suggesting that defective mitochondrial clearance via mitophagy is key in PD etiology. Accelerating the identification and/or removal of dysfunctional mitochondria could therefore provide a disease-modifying approach to treatment. To that end, we performed a high-content phenotypic screen (HCS) of ∼125,000 small molecules to identify compounds that positively modulate mitochondrial accumulation of the PINK1-Parkin-dependent mitophagy initiation marker p-Ser65-Ub in Parkin haploinsufficiency (Parkin +/R275W) human fibroblasts. Following confirmatory counter-screening and orthogonal assays, we selected compounds of interest that enhance mitophagy-related biochemical and functional endpoints in patient-derived fibroblasts. Identification of inhibitors of the ubiquitin-specific peptidase and negative regulator of mitophagy USP30 within our hits further validated our approach. The compounds identified in this work provide a novel starting point for further investigation and optimization.


Assuntos
Mitofagia , Doença de Parkinson , Humanos , Mitofagia/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitinação/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Mutação , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
3.
Bioorg Med Chem Lett ; 81: 129130, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640928

RESUMO

Glucocerebrosidase (GCase) is a lysosomal enzyme encoded by the GBA1 gene, loss of function variants of which cause an autosomal recessive lysosomal storage disorder, Gaucher disease (GD). Heterozygous variants of GBA1 are also known as the strongest common genetic risk factor for Parkinson's disease (PD). Restoration of GCase enzymatic function using a pharmacological chaperone strategy is considered a promising therapeutic approach for PD and GD. We identified compound 4 as a GCase pharmacological chaperone with sub-micromolar activity from a high-throughput screening (HTS) campaign. Compound 4 was further optimised to ER-001230194 (compound 25). ER-001230194 shows improved ADME and physicochemical properties and therefore represents a novel pharmacological chaperone with which to investigate GCase pharmacology further.


Assuntos
Doença de Gaucher , Doença de Parkinson , Humanos , Glucosilceramidase/genética , Mutação , Doença de Parkinson/tratamento farmacológico , Doença de Gaucher/tratamento farmacológico , Lisossomos
4.
J Biol Chem ; 296: 100209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33372898

RESUMO

The genetics and pathophysiology of Parkinson's disease (PD) strongly implicate mitochondria in disease aetiology. Elegant studies over the last two decades have elucidated complex molecular signaling governing the identification and removal of dysfunctional mitochondria from the cell, a process of mitochondrial quality control known as mitophagy. Mitochondrial deficits and specifically reduced mitophagy are evident in both sporadic and familial PD. Mendelian genetics attributes loss-of-function mutations in key mitophagy regulators PINK1 and Parkin to early-onset PD. Pharmacologically enhancing mitophagy and accelerating the removal of damaged mitochondria are of interest for developing a disease-modifying PD therapeutic. However, despite significant understanding of both PINK1-Parkin-dependent and -independent mitochondrial quality control pathways, the therapeutic potential of targeting mitophagy remains to be fully explored. Here, we provide a summary of the genetic evidence supporting the role for mitophagy failure as a pathogenic mechanism in PD. We assess the tractability of mitophagy pathways and prospects for drug discovery and consider intervention points for mitophagy enhancement. We explore the numerous hit molecules beginning to emerge from high-content/high-throughput screening as well as the biochemical and phenotypic assays that enabled these screens. The chemical and biological properties of these reference compounds suggest many could be used to interrogate and perturb mitochondrial biology to validate promising drug targets. Finally, we address key considerations and challenges in achieving preclinical proof-of-concept, including in vivo mitophagy reporter methodologies and disease models, as well as patient stratification and biomarker development for mitochondrial forms of the disease.


Assuntos
Mitofagia , Doença de Parkinson/patologia , Antiparkinsonianos/farmacologia , Descoberta de Drogas , Humanos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Mutação , Doença de Parkinson/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
5.
Synlett ; 30(10): 1178-1182, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33767531

RESUMO

A simple and robust method for electrochemical alkyl C-H fluorination is presented. Using a simple nitrate additive, a widely available fluorine source (Selectfluor), and carbon-based electrodes, a wide variety of activated and unactivated C-H bonds were converted to their C-F congeners. The scalability of the reaction was also demonstrated with a 100 gram preparation of fluorovaline.

6.
Org Biomol Chem ; 11(1): 164-9, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23117280

RESUMO

A general strategy for photochemical alkynylation of unreactive C(sp(3))-H bonds has been developed. After C-H abstraction by the photo-excited benzophenone, a two-carbon unit was efficiently transferred to the generated radical from 1-tosyl-2-(trimethylsilyl)acetylene to afford the alkynylated product. The present reaction enables construction of various tri- and tetra-substituted carbons from heteroatom-substituted methylenes, methines and alkanes in a highly chemoselective fashion, and would serve as a new synthetic strategy for rapid construction of complex structures.


Assuntos
Benzofenonas/química , Compostos de Trimetilsilil/síntese química , Radicais Livres/química , Ligação de Hidrogênio , Estrutura Molecular , Processos Fotoquímicos , Compostos de Trimetilsilil/química
7.
J Org Chem ; 77(22): 9959-69, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23113810

RESUMO

A direct conversion of C(sp(3))-H bonds to C(sp(3))-N bonds has been achieved by utilizing catalytic N-hydroxyphthalimide (NHPI) and stoichiometric dialkyl azodicarboxylate. NHPI functions as a precursor of the electron-deficient phthalimide N-oxyl radical (PINO) to abstract hydrogens, and dialkyl azodicarboxylate acts as a trapping agent of the resultant carbon radical to generate the hydrazine derivatives. This C-H amination proceeds in a highly chemoselective manner with a wide applicability to functionalize benzylic, propargylic, and aliphatic C-H bonds. Furthermore, the obtained hydrazine compounds were readily converted to the corresponding carbamates or amines. Hence, the present protocol for direct introduction of the nitrogen functionality serves as a powerful tool for efficient construction of nitrogen-substituted natural products and pharmaceuticals.


Assuntos
Alcanos/química , Compostos Azo/química , Nitrogênio/química , Ftalimidas/química , Aminação , Catálise , Ligação de Hidrogênio , Estrutura Molecular , Estereoisomerismo
8.
Org Lett ; 13(21): 5928-31, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21992181

RESUMO

A general protocol for direct transformation of unreactive C(sp(3))-H bonds to C(sp(3))-CN bonds has been developed. The C-H activation was effected by photoexcited benzophenone, and the generated carbon radical was subsequently trapped with tosyl cyanide to afford the corresponding nitrile in a highly efficient manner. The present methodology is widely applicable to versatile starting materials and, thus, serves as a powerful tool for selective one-carbon elongation for construction of architecturally complex molecules.


Assuntos
Cianetos/química , Hidrogênio/química , Processos Fotoquímicos , Radicais Livres/química , Estrutura Molecular , Prolina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...